Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J R Soc Interface ; 20(206): 20230386, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37727071

RESUMO

Shared coordination geometries between metal ions within reactive minerals and enzymatic metal cofactors hints at mechanistic and possibly evolutionary homology between particular abiotic chemical mineralogies and biological metabolism. The octahedral coordination of reactive Fe2+/3+ minerals such as green rusts, endemic to anoxic sediments and the early Earth's oceans, mirrors the di-iron reaction centre of soluble methane monooxygenase (sMMO), responsible for methane oxidation in methanotrophy. We show that methane oxidation occurs in tandem with the oxidation of green rust to lepidocrocite and magnetite, mimicking radical-mediated methane oxidation found in sMMO to yield not only methanol but also halogenated hydrocarbons in the presence of seawater. This naturally occurring geochemical pathway for CH4 oxidation elucidates a previously unidentified carbon cycling mechanism in modern and ancient environments and reveals clues into mineral-mediated reactions in the synthesis of organic compounds necessary for the emergence of life.


Assuntos
Basidiomycota , Metanol , Metano , Oxirredução , Evolução Biológica
2.
J Aerosol Sci ; 160: 105914, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36530797

RESUMO

The tension on the supply of surgical and FFP2 masks during the first wave of the COVID-19 pandemic leads to study the potential reuse of these masks. As washing is easily adaptable at home, this treatment solution was retained. In this work, thirty-six references of surgical masks and four FFP2 masks were tested without being worn or washed and after several washing cycles. The results highlighted a great heterogeneity of performances depending on the mask trademarks, both for surgical masks and FFP2. The quality of the meltblown and spunbond layers and the presence/absence of electrostatic charges at the fiber surface are put forward to explain the variability of results, both on differential pressures and filtration efficiencies. The differential pressure and the particle filtration efficiency of the washed masks were maintained up to 10 washing cycles and met the standard requirements. However, an immersion in water with a detergent induces an efficiency decrease for submicronic particles. This lower performance, constant after the first washing cycle, can be explained by the loss of electrostatic charges during the washing cycle. The modifications of surface properties after washing also lead to a loss of the hydrophobic behavior of type IIR surgical masks, which can therefore no more be considered as resistant to blood projections.

3.
Langmuir ; 37(18): 5464-5474, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33909979

RESUMO

A significant part of the hydrocarbons contained in source rocks remains confined within the organic matter-called kerogen-from where they are generated. Understanding the sorption and transport properties of confined hydrocarbons within the kerogens is, therefore, paramount to predict production. Specifically, knowing the impact of thermal maturation on the evolution of the organic porous network is key. Here, we propose an experimental procedure to study the interplay between the chemical evolution and the structural properties of the organic porous network at the nanometer scale. First, the organic porous networks of source rock samples, covering a significant range of natural thermal maturation experienced by the Vaca Muerta formation (Neuquén Basin, Argentina), are physically reconstructed using bright-field electron tomography. Their structural description allows us to measure crucial parameters such as the porosity, specific pore volume and surface area, aperture and cavity size distributions, and constriction. In addition, a model-free computation of the topological properties (effective porosity, connectivity, and tortuosity) is conducted. Overall, we document a general increase of the specific pore volume with thermal maturation. This controls the topological features depicting increasing accessibility to alkane molecules, sensed by the evolution of the effective porosity. Collectively, our results highlight the input of bright-field electron tomography in the study of complex disordered amorphous porous media, especially to describe the interplay between the structural features and transport properties of confined fluids.

4.
J Hazard Mater ; 403: 123916, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264968

RESUMO

Soot samples from different fuels were produced in small and pilot combustion test benches at various O2 concentrations, and were then characterized in terms of primary particle diameter, specific surface area and oxygen content/speciation. Water sorption measurements were then carried out for soot compacted into pellet form and in powder form, using both a gravimetric microbalance and a manometric analyser. Water adsorption isotherms are all found to be Type V, and reveal the central role of the specific surface area and the oxygen content of soot. A single parametrization of the second Dubinin-Serpinsky model gives a proper fit for all isotherms. To the best of our knowledge, this is the first study to provide physico-chemical parameters and water sorption results for fire soot. This enables a better description of the soot cake formed on filters during a fire, in particular in industrial confined facilities as simulated in this study. Humidity can be then explicitly considered in the same way as other parameters influencing the aeraulic resistance of soot cakes. These results can be used to improve predictions of the consequences of fires on the containment of toxic materials within industrial facilities.

5.
Proc Natl Acad Sci U S A ; 115(49): 12365-12370, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30442660

RESUMO

Organic matter is responsible for the generation of hydrocarbons during the thermal maturation of source rock formation. This geochemical process engenders a network of organic hosted pores that governs the flow of hydrocarbons from the organic matter to fractures created during the stimulation of production wells. Therefore, it can be reasonably assumed that predictions of potentially recoverable confined hydrocarbons depend on the geometry of this pore network. Here, we analyze mesoscale structures of three organic porous networks at different thermal maturities. We use electron tomography with subnanometric resolution to characterize their morphology and topology. Our 3D reconstructions confirm the formation of nanopores and reveal increasingly tortuous and connected pore networks in the process of thermal maturation. We then turn the binarized reconstructions into lattice models including information from atomistic simulations to derive mechanical and confined fluid transport properties. Specifically, we highlight the influence of adsorbed fluids on the elastic response. The resulting elastic energy concentrations are localized at the vicinity of macropores at low maturity whereas these concentrations present more homogeneous distributions at higher thermal maturities, due to pores' topology. The lattice models finally allow us to capture the effect of sorption on diffusion mechanisms with a sole input of network geometry. Eventually, we corroborate the dominant impact of diffusion occurring within the connected nanopores, which constitute the limiting factor of confined hydrocarbon transport in source rocks.

6.
Chemistry ; 22(49): 17820-17832, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27727465

RESUMO

Pre- and postintroduction of substituents with respect to the macrocyclization step leads to previously unknown N-substituted azacalixphyrins. The stepwise synthetic approach has been studied in detail to highlight the key role of the N-substituents of the precursors and/or intermediates in terms of reactivity. Based on a combined experimental and theoretical investigation, the relationship between the properties of the macrocycles and their degree of substitution is rationalized. Depending on the nature of the N-substituents, the formation of supramolecular ribbon-like structures could also be observed, as demonstrated by combined TEM, SEM, AFM, and FTIR experiments.

7.
J Colloid Interface Sci ; 386(1): 268-76, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22918046

RESUMO

This work presents the synthesis and physico-chemical characterization of a novel artificial photosynthetic design, using anisotropic semiconducting nanorods as scaffolds to assemble organic donor-acceptor complexes on their surface. These hierarchical hybrid D-A assemblies were obtained by the co-grafting of porphyrins and fullerenes on the ZnO nanorods. Polarity of the solvent and porphyrin to fullerene ratios were investigated to be markedly influencing the donor-acceptor interaction under the co-grafted conditions on ZnO nanorods. Fourier transform infrared spectroscopy, cyclic voltammetry, electronic absorption and fluorescence spectroscopic techniques were used to characterize the formation and investigate the optoelectronic properties of porphyrin-fullerene complexes on the surface of ZnO. To the best of our knowledge, this is the first example of highly interacting porphyrin-fullerene complexes on ZnO nanorods, which may allow generating efficient nanosystems for artificial photosynthesis and harvesting of solar energy.

8.
Chemphyschem ; 10(14): 2465-70, 2009 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-19746390

RESUMO

We describe herein the design, synthesis and detailed structural characterization of hybrid 1D nanostructures. They are prepared by supramolecular self-assembly of oligothiophene molecules on the surface of zinc oxide nanorods in solution at room temperature. Electronic absorption spectroscopy and X-ray diffraction show that both organic and inorganic components in the coaxial p-n heterojunctions are crystalline. Especially, it is demonstrated that the organic compounds form a self-assembled monolayer at the surface of the nanorods, which is not the case when zinc oxide quantum dots are instead used. As a result of their hybrid nature, the 1D nanostructures lead to ambipolar semiconducting nanostructured materials as active layers in field-effect transistors.

9.
Langmuir ; 25(15): 8473-9, 2009 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-19301838

RESUMO

The adsorption of amphiphilic Ru(II) complex Z907 onto the surface of ZnO nanospheres and nanorods causes the gelation of organic solvents, such as THF and acetone. The gels are thermally stable at very low concentration (nanoparticle volume fraction phi = 0.009) but mechanically fragile, with the behavior being dependent on the nature of the solvent, nanoparticle concentration, and the Z907/ZnO mole/weight ratio. Rheological experiments confirmed that the solid component built up a network to give a viscoelastic gel-phase material with a weak value of storage modulus G'. However, TEM and SEM experiments did not give evidence that nanoparticle long-range ordering occurred under the experimental conditions investigated. Moreover, time-dependent SAXS measurements pointed to a decrease in the nanoparticle aggregate size upon gelation. All together, the data obtained might be rationalized in terms of the aggregate-to-aggregate transition in solution, with the primitive large aggregates giving rise to smaller ones upon reaction with Z907. The resulting smaller hybrid aggregates could be the active species that act as self-assembling components in the gelation process. Given the interesting electronic and photonic properties of zinc oxide nanoparticles, such hybrid organic-inorganic gels could open new directions in materials science, low-cost electronics, and photovoltaics.

10.
J Phys Chem B ; 109(38): 18103-6, 2005 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16853325

RESUMO

We present an experimental work devoted to study of the thermodynamical properties of solid methanol. We combine Fourier transform infrared spectroscopy (FTIR) and mass spectrometry (MS) to measure, for the first time, the vapor pressure of various methanol solid phases and determine their Clausius-Clapeyron equations. We perform our experiments between T = 130 K and the triple point temperature T(t) = 175.61 K. When methanol is condensed from its vapor below T(t), we observe three different solid phases depending on temperature. A condensation at T = 130 K forms a metastable phase with an enthalpy of sublimation deltaH(metastable-vapor) = 42.9 +/- 0.5 kJ.mol(-1). Upon heating, this phase transforms itself at T approximately 145 K to the alpha-phase that has an enthalpy of sublimation deltaH(alpha-vapor) = 46.9 +/- 0.2 kJ.mol(-1). Cooling the alpha-phase does not lead back to the metastable phase, whereas heating this alpha-phase leads to the beta-phase occurrence at T(alpha-beta) = 157.36 K. This latter one is stable until T(t) and has an enthalpy of sublimation deltaH(beta-vapor) = 44.2 +/- 0.5 kJ.mol(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...